Max In A Sliding Window In Numpy Array
Solution 1:
Approach #1 : You could use 1D
max filter from Scipy -
from scipy.ndimage.filters import maximum_filter1d
defmax_filter1d_valid(a, W):
hW = (W-1)//2# Half window sizereturn maximum_filter1d(a,size=W)[hW:-hW]
Approach #2 : Here's another approach with strides
: strided_app
to create a 2D
shifted version as view into the array pretty efficiently and that should let us use any custom reduction operation along the second axis afterwards -
defmax_filter1d_valid_strided(a, W):
return strided_app(a, W, S=1).max(axis=1)
Runtime test -
In [55]:a=np.random.randint(0,10,(10000))# @Abdou's solution using pandas rollingIn [56]:%timeitpd.Series(a).rolling(5).max().dropna().tolist()1000 loops,best of 3:999µsperloopIn [57]:%timeitmax_filter1d_valid(a,W=5)...:%timeitmax_filter1d_valid_strided(a,W=5)...:10000loops,best of 3:90.5µsperloop10000loops,best of 3:87.9µsperloop
Solution 2:
Pandas has a rolling method for both Series and DataFrames, and that could be of use here:
import pandas as pd
lst = [6,4,8,7,1,4,3,5,7,8,4,6,2,1,3,5,6,3,4,7,1,9,4,3,2]
lst1 = pd.Series(lst).rolling(5).max().dropna().tolist()
# [8.0, 8.0, 8.0, 7.0, 7.0, 8.0, 8.0, 8.0, 8.0, 8.0, 6.0, 6.0, 6.0, 6.0, 6.0, 7.0, 7.0, 9.0, 9.0, 9.0, 9.0]
For consistency, you can coerce each element of lst1
to int
:
[int(x) for x in lst1]
# [8, 8, 8, 7, 7, 8, 8, 8, 8, 8, 6, 6, 6, 6, 6, 7, 7, 9, 9, 9, 9]
Solution 3:
I have tried several variants now and would declare the Pandas version as the winner of this performance race. I tried several variants, even using a binary tree (implemented in pure Python) for quickly computing maxes of arbitrary subranges. (Source available on demand). The best algorithm I came up with myself was a plain rolling window using a ringbuffer; the max of that only needed to be recomputed completely if the current max value was dropped from it in this iteration; otherwise it would remain or increase to the next new value. Compared with the old libraries, this pure-Python implementation was faster than the rest.
In the end I found that the version of the libraries in question was highly relevant. The rather old versions I was mainly still using were way slower than the modern versions. Here are the numbers for 1M numbers, rollingMax'ed with a window of size 100k:
old (slow HW) new (better HW)
scipy:0.9.0: 21.29873919490.13.3: 11.5804400444pandas:0.7.0: 13.58964109420.18.1: 0.0551438331604numpy:1.6.1: 1.174172163011.8.2: 0.537392139435
Here is the implementation of the pure numpy version using a ringbuffer:
defrollingMax(a, window):
defeachValue():
w = a[:window].copy()
m = w.max()
yield m
i = 0
j = window
while j < len(a):
oldValue = w[i]
newValue = w[i] = a[j]
if newValue > m:
m = newValue
elif oldValue == m:
m = w.max()
yield m
i = (i + 1) % window
j += 1return np.array(list(eachValue()))
For my input this works great because I'm handling audio data with lots of peaks in all directions. If you put a constantly decreasing signal into it (e. g. -np.arange(10000000)
), then you will experience the worst case (and maybe you should reverse the input and the output in such cases).
I just include this in case someone wants to do this task on a machine with old libraries.
Solution 4:
First of all, I think there is a mistake in your explanation because the 10th element of your initial imput array at the beginning of your explanation is equal to 8, and below, where you apply the window, it is 2.
After correcting that, I think that the code that does what you want is the following:
import numpy as np
a=np.array([ 6,4,8,7,1,4,3,5,7,8,4,6,2,1,3,5,6,3,4,7,1,9,4,3,2 ])
window=5for i inrange(0,len(a)-window,1):
b[i] = np.amax(a[i:i+window])
I think, this way is better than creating a shifted 2D version of your imput because when you create such a version you need to use much more memory than using the original imput array, so you may run out of memory if the input is large.
Solution 5:
If you have two dimension data, for example stock price and want to get rolling max or whatever, this will works. Caculating without using iteration.
n = 5# size of rolling windowdata_expanded = np.expand_dims(data, 1)
data_shift = [np.roll(data_expanded, shift=-i, axis=2) for i in range(n)]
data_shift = np.concatenate(data_shift, axis=1)
data_max = np.max(data_shift, axis=1) # max, mean, std...
Post a Comment for "Max In A Sliding Window In Numpy Array"