In Bokeh, How Do I Add Tooltips To A Timeseries Chart (hover Tool)?
Solution 1:
Below is what I came up with.
Its not pretty but it works.
Im still new to Bokeh (& Python for that matter) so if anyone wants to suggest a better way to do this, please feel free.
import pandas as pd
import numpy as np
from bokeh.charts import TimeSeries
from bokeh.models import HoverTool
from bokeh.plotting import show
toy_df = pd.DataFrame(data=np.random.rand(5,3), columns = ('a', 'b' ,'c'), index = pd.DatetimeIndex(start='01-01-2015',periods=5, freq='d'))
_tools_to_show = 'box_zoom,pan,save,hover,resize,reset,tap,wheel_zoom'
p = figure(width=1200, height=900, x_axis_type="datetime", tools=_tools_to_show)
# FIRST plot ALL lines (This is a hack to get it working, why can't i pass in a dataframe to multi_line?) # It's not pretty but it works. # what I want to do!: p.multi_line(df)
ts_list_of_list = []
for i inrange(0,len(toy_df.columns)):
ts_list_of_list.append(toy_df.index.T)
vals_list_of_list = toy_df.values.T.tolist()
# Define colors because otherwise multi_line will use blue for all lines...
cols_to_use = ['Black', 'Red', 'Lime']
p.multi_line(ts_list_of_list, vals_list_of_list, line_color=cols_to_use)
# THEN put scatter one at a time on top of each one to get tool tips (HACK! lines with tooltips not yet supported by Bokeh?) for (name, series) in toy_df.iteritems():
# need to repmat the name to be same dimension as index
name_for_display = np.tile(name, [len(toy_df.index),1])
source = ColumnDataSource({'x': toy_df.index, 'y': series.values, 'series_name': name_for_display, 'Date': toy_df.index.format()})
# trouble formating x as datestring, so pre-formating and using an extra column. It's not pretty but it works.
p.scatter('x', 'y', source = source, fill_alpha=0, line_alpha=0.3, line_color="grey")
hover = p.select(dict(type=HoverTool))
hover.tooltips = [("Series", "@series_name"), ("Date", "@Date"), ("Value", "@y{0.00%}"),]
hover.mode = 'mouse'
show(p)
Solution 2:
I’m not familiar with Pandas,I just use python list to show the very example of how to add tooltips to muti_lines, show series names ,and properly display date/time。Below is the result. Thanks to @bs123's answer and @tterry's answer in Bokeh Plotting: Enable tooltips for only some glyphs
# -*- coding: utf-8 -*-from bokeh.plotting import figure, output_file, show, ColumnDataSource
from bokeh.models import HoverTool
from datetime import datetime
dateX_str = ['2016-11-14','2016-11-15','2016-11-16']
#conver the string of datetime to python datetime object
dateX = [datetime.strptime(i, "%Y-%m-%d") for i in dateX_str]
v1= [10,13,5]
v2 = [8,4,14]
v3= [14,9,6]
v = [v1,v2,v3]
names = ['v1','v2','v3']
colors = ['red','blue','yellow']
output_file('example.html',title = 'example of add tooltips to multi_timeseries')
tools_to_show = 'hover,box_zoom,pan,save,resize,reset,wheel_zoom'
p = figure(x_axis_type="datetime", tools=tools_to_show)
#to show the tooltip for multi_lines,you need use the ColumnDataSource which define the data source of glyph#the key is to use the same column name for each data source of the glyph#so you don't have to add tooltip for each glyph,the tooltip is added to the figure#plot each timeseries line glyphfor i in xrange(3):
# bokeh can't show datetime object in tooltip properly,so we use string instead
source = ColumnDataSource(data={
'dateX': dateX, # python datetime object as X axis'v': v[i],
'dateX_str': dateX_str, #string of datetime for display in tooltip'name': [names[i] for n in xrange(3)]
})
p.line('dateX', 'v',source=source,legend=names[i],color = colors[i])
circle = p.circle('dateX', 'v',source=source, fill_color="white", size=8, legend=names[i],color = colors[i])
#to avoid some strange behavior(as shown in the picture at the end), only add the circle glyph to the renders of hover tool#so tooltip only takes effect on circle glyph
p.tools[0].renderers.append(circle)
# show the tooltip
hover = p.select(dict(type=HoverTool))
hover.tooltips = [("value", "@v"), ("name", "@name"), ("date", "@dateX_str")]
hover.mode = 'mouse'
show(p)
tooltips with some strange behavior,two tips displayed at the same time
Solution 3:
Here is my solution. I inspected the glyph render data source to see what are the names on it. Then I use those names on the hoover tooltips. You can see the resulting plot here.
import numpy as np
from bokeh.charts import TimeSeries
from bokeh.models import HoverTool
from bokeh.plotting import show
toy_df = pd.DataFrame(data=np.random.rand(5,3), columns = ('a', 'b' ,'c'), index = pd.DatetimeIndex(start='01-01-2015',periods=5, freq='d'))
#Bockeh display dates as numbers so convert to string tu show correctly
toy_df.index = toy_df.index.astype(str)
p = TimeSeries(toy_df, tools='hover')
#Next 3 lines are to inspect how are names on gliph to call them with @name on hover#glyph_renderers = p.select(dict(type=GlyphRenderer))#bar_source = glyph_renderers[0].data_source#print(bar_source.data) #Here we can inspect names to call on hover
hover = p.select(dict(type=HoverTool))
hover.tooltips = [
("Series", "@series"),
("Date", "@x_values"),
("Value", "@y_values"),
]
show(p)
Solution 4:
The original poster's code doesn't work with the latest pandas (DatetimeIndex constructor has changed), but Hovertool now supports a formatters
attribute that lets you specify a format as a strftime string. Something like
fig.add_tool(HoverTool(
tooltip=[
('time', '@index{%Y-%m-%d}')
],
formatters={
'@index': 'datetime'
}
))
Post a Comment for "In Bokeh, How Do I Add Tooltips To A Timeseries Chart (hover Tool)?"