Python Dictionary To Pandas Dataframe With Multiple Columns
I have the following python dictionary: d= {'data' : Counter({ 'important' : 2, 'very' : 3}), 'analytics' : Counter({ 'boring' : 5,
Solution 1:
You can use stack
:
df = pd.DataFrame(d).stack().reset_index()
df.columns = ['word','category','count']
print(df)
word category count
0 boring analytics 5.0
1 important data 2.0
2 sleep analytics 3.0
3 very data 3.0
df = pd.DataFrame.from_dict(d, orient='index').stack().reset_index()
df.columns = ['category','word','count']
print(df)
category word count
0 analytics boring 5.0
1 analytics sleep 3.0
2 data important 2.0
3 data very 3.0
Another solution with nested list comprehension:
df = pd.DataFrame([(key,key1,val1) for key,val in d.items() for key1,val1 in val.items()])
df.columns = ['category','word','count']
print(df)
category word count
0 analytics boring 5
1 analytics sleep 3
2 data important 2
3 data very 3
Post a Comment for "Python Dictionary To Pandas Dataframe With Multiple Columns"