How To Implement Network Using Bert As A Paragraph Encoder In Long Text Classification, In Keras?
I am doing a long text classification task, which has more than 10000 words in doc, I am planing to use Bert as a paragraph encoder, then feed the embeddings of paragraph to BiLSTM
Solution 1:
I believe you can check the following article. The author shows how to load a pre-trained BERT model, embed it into a Keras layer and use it into a customized Deep Neural Network. First install TensorFlow 2.0 Keras implementation of google-research/bert:
pip install bert-for-tf2
Then run:
import bert
import os
def createBertLayer():
global bert_layer
bertDir = os.path.join(modelBertDir, "multi_cased_L-12_H-768_A-12")
bert_params = bert.params_from_pretrained_ckpt(bertDir)
bert_layer = bert.BertModelLayer.from_params(bert_params, name="bert")
bert_layer.apply_adapter_freeze()
def loadBertCheckpoint():
modelsFolder = os.path.join(modelBertDir, "multi_cased_L-12_H-768_A-12")
checkpointName = os.path.join(modelsFolder, "bert_model.ckpt")
bert.load_stock_weights(bert_layer, checkpointName)
Post a Comment for "How To Implement Network Using Bert As A Paragraph Encoder In Long Text Classification, In Keras?"