Skip to content Skip to sidebar Skip to footer

Calculating Confidence Interval For A Proportion In One Sample

What would be a better way to calculate Confidence Interval (CI) for a proportion when the sample size is small and even the sample size is 1? I am currently calculating CI for a P

Solution 1:

Try statsmodels.stats.proportion.proportion_confint

http://www.statsmodels.org/devel/generated/statsmodels.stats.proportion.proportion_confint.html

According to their documentation, you use it like this:

ci_low, ci_upp = proportion_confint(count, nobs, alpha=0.05, method='normal')

Where the parameters are:

  • count (int or array_array_like) – number of successes, can be pandas Series or DataFrame
  • nobs (int) – total number of trials
  • alpha (float in (0, 1)) – significance level, default 0.05
  • method (string in ['normal']) – method to use for confidence interval, currently available methods:

    • normal : asymptotic normal approximation
    • agresti_coull : Agresti-Coull interval
    • beta : Clopper-Pearson interval based on Beta distribution
    • wilson : Wilson Score interval
    • jeffreys : Jeffreys Bayesian Interval
    • binom_test : experimental, inversion of binom_test

Post a Comment for "Calculating Confidence Interval For A Proportion In One Sample"