Skip to content Skip to sidebar Skip to footer

Using Prophet On NetCDF File Using Xarray

I have a 'netCDF' file which I have read with xarray and I want to use to generate a forecast for each pixel in the file. import xarray as xr from fbprophet import Prophet import

Solution 1:

I believe I have the answer you are looking for.

Instead of doing a double loop over each of the coordinate Points of the xarray DataArray, one can use the vectorized u_function of the xarray which allows parallel computing.

If you apply the FProphet into the u_function, then it is possible to generate an prediction output specific for each coordinate Point.

Here is a reproducible example:

import pandas as pd
pd.set_option('display.width', 50000)
pd.set_option('display.max_rows', 50000)
pd.set_option('display.max_columns', 5000)


import numpy as np
import xarray as xr

from dask.diagnostics import ProgressBar
from fbprophet import Prophet

# https://stackoverflow.com/questions/56626011/using-prophet-on-netcdf-file-using-xarray

 #https://gist.github.com/scottyhq/8daa7290298c9edf2ef1eb05dc3b6c60
ds = xr.tutorial.open_dataset('rasm').load()

def parse_datetime(time):
    return pd.to_datetime([str(x) for x in time])

ds.coords['time'] = parse_datetime(ds.coords['time'].values)


ds = ds.isel({'x':slice(175,180), 'y':slice(160,170)})
ds.isel({'time':0}).Tair.plot()

ds = ds.chunk({'x':40, 'y':40})

def fillna_in_array(x):
    y = np.where(np.abs(x)==np.inf, 0, x)  

    y = np.where(np.isnan(y), 0, y)

    if np.all(y) == 0:

        y = np.arange(len(y))
    return y



def xarray_Prophet(y, time, periods=30, freq='D'):
    '''
    This is a vectorized u_function of the Prophet prediction module.

    It returns an array of values containing original and predicted values
    according to the provided temporal sequence.

    Parameters:

        y (array): an array containing the y past values that will be 
                   used for the prediction.

        time (array): an array containing the time intervals of each respective 
                      entrance of the sampled y

        periods (positive int): the number of times it will be used for prediction

        freq (str): the frequency that will be used in the prediction:
            (i.e.: 'D', 'M', 'Y', 'm', 'H'...)

    Returns:

        array of predicted values of y (yhat)

    '''


    # Here, we ensure that all data is filled. Since Xarray has some Issues with
    # sparse matrices, It is a good solution for all NaN, inf, or 0 values for 
    # sampled y data

    with ProgressBar():
        y = fillna_in_array(y)

        # here the processing really starts:

        forecast = pd.DataFrame()

        forecast['ds'] = pd.to_datetime(time)
        forecast['y'] = y


        m1 = Prophet(weekly_seasonality=True, 
                     daily_seasonality=False).fit(forecast)  

        forecast = m1.make_future_dataframe(periods=periods, freq=freq)

        # In here, the u_function should return a simple 1-D array, 
        # or a pandas  series.
        # Therefore, we select the attribute 'yat' from the 
        # FProphet prediction dataframe to return solely a 1D data.

    return m1.predict(forecast)['yhat']

def predict_y(ds, 
              dim=['time'], 
              dask='allowed', 
              new_dim_name=['predicted'], 
              periods=30, freq='D'):

    '''
    Function Description:

        This function is a vectorized parallelized wrapper of 
        the "xarray_Prophet".

        It returns a new Xarray object (dataarray or Dataset) with the new 
        dimension attached.

    Parameters:
        ds (xarray - DataSet/DataArray)

        dim (list of strings): a list of the dimension that will be used in the 
        reduction (temporal prediction)

        dask (str):  allowed 

        new_dim_name (list of strings): it contains the name that will be used
                                        in the reduction operation.

        periods (positive int): the number of steps to be predicted based
                                      on the parameter "freq".


        freq (str): the frequency that will be used in the prediction:
            (i.e.: 'D', 'M', 'Y', 'm', 'H'...)                                      



    Returns:

        Xarray object (Dataset or DataArray): the type is solely dependent on 
                                              the ds object's type.

    '''
    with ProgressBar():
        ds = ds.sortby('time', False)

        time = np.unique(ds['time'].values)

        kwargs = {'time':time,
                  'periods': periods,
                  'freq':freq}


        filtered = xr.apply_ufunc(xarray_Prophet,
                                      ds,
                                      dask=dask,
                                      vectorize=True,
                                      input_core_dims=[dim],
                                      #exclude_dims = dim, # This must not be setted.
                                      output_core_dims=[new_dim_name],
                                      kwargs=kwargs,
                                      output_dtypes=[float],
                                      join='outer',
                                      dataset_fill_value=np.nan,
                                      ).compute()

    return filtered



da_binned = predict_y( ds = ds['Tair'], 
                       dim = ['time'], 
                       dask='allowed',
                       new_dim_name=['predicted'],
                       periods=30).rename({'predicted':'time'})



print(da_binned)

Post a Comment for "Using Prophet On NetCDF File Using Xarray"