Consecutive Events Below Threshold
I have SPI timeseries of length 324 and values ranging from -3 to +3. I want to get the indices of places where 3 or more consecutive timesteps are more below threshold -1 I have t
Solution 1:
With np.logical_and.reduce
+ shift
, checking for consecutive rows that are below the threshold. Then a groupby to get all of the aggregations you need:
import numpy as np
import pandas as pd
def get_grps(s, thresh=-1, Nmin=3):
"""
Nmin : int > 0
Min number of consecutive values below threshold.
"""
m = np.logical_and.reduce([s.shift(-i).le(thresh) for i in range(Nmin)])
if Nmin > 1:
m = pd.Series(m, index=s.index).replace({False: np.NaN}).ffill(limit=Nmin-1).fillna(False)
else:
m = pd.Series(m, index=s.index)
# Form consecutive groups
gps = m.ne(m.shift(1)).cumsum().where(m)
# Return None if no groups, else the aggregations
if gps.isnull().all():
return None
else:
return s.groupby(gps).agg([list, sum, 'size']).reset_index(drop=True)
get_grps(pd.Series(a))
# list sum size
#0 [-1, -2, -5] -8 3
#1 [-3, -3, -1, -2] -9 4
get_grps(pd.Series(a), thresh=-1, Nmin=1)
# list sum size
#0 [-3] -3 1
#1 [-1, -2, -5] -8 3
#2 [-3, -3, -1, -2] -9 4
get_grps(pd.Series(a), thresh=-100, Nmin=1)
#None
Solution 2:
Here is a commented step-by-step recipe.
a = [-3,4,5,-1,-2,-5,1,4,6,9,-3,-3,-1,-2,4,1,4]
th = -1
a = np.array(a)
# create mask of events; find indices where mask switches
intervals = np.where(np.diff(a<=th, prepend=0, append=0))[0].reshape(-1,2)
# discard short stretches
intervals = intervals[np.subtract(*intervals.T) <= -3]
intervals
# array([[ 3, 6],
# [10, 14]])
# get corresponding data
stretches = np.split(a, intervals.reshape(-1))[1::2]
stretches
# [array([-1, -2, -5]), array([-3, -3, -1, -2])]
# count events
-np.subtract(*intervals.T)
# array([3, 4])
# sum events
np.add.reduceat(a, intervals.reshape(-1))[::2]
# array([-8, -9])
Solution 3:
Since you tagged pandas:
s = pd.Series([-3,4,5,-1,-2,-5,1,4,6,9,-3,-3,-1,-2,4,1,4])
# thresholding
a = (s<1)
# blocks
b = (a!=a.shift()).cumsum()
# groupby
df = s[a].groupby(b).agg([list,'size','sum'])
df = df[df.size>=3]
Output
list size sum
3 [-1, -2, -5] 3 -8
5 [-3, -3, -1, -2] 4 -9
Post a Comment for "Consecutive Events Below Threshold"