Use Agg In Python For Pd.dataframe Wiht Customized Function Whose Inputs Are Multiple Dataframe Columns
I have a data frame like this. mydf = pd.DataFrame({'a':[1,1,3,3],'b':[np.nan,2,3,6],'c':[1,3,3,9]}) a b c 0 1 NaN 1 1 1 2.0 3 2 3 3.0 3 3 3 6.0 9 I would like
Solution 1:
One way of doing it
def func(x):
C= (x['b']/x['c']).max()
D= (x['c']/x['b']).max()
return pd.Series([C, D], index=['b_c','c_b'])
mydf.groupby('a').apply(func).reset_index()
Output
a b_c c_b
0 1 0.666667 1.5
1 3 1.000000 1.5
Solution 2:
Prepend new temporary columns to the dataframe via assign
, then do your groupby
and max
functions. This method should provide significant performance benefits.
>>> (mydf
.assign(b_c=df['b'].div(df['c']), c_b=df['c'].div(df['b']))
.groupby('a')[['b_c', 'c_b']]
.max()
)
b_c c_b
a
1 0.666667 1.5
3 1.000000 1.5
Timings
# Sample data.
n = 1000 # Sample data number of rows = 4 * n.
data = {
'a': list(range(n)) * 4,
'b': [np.nan, 2, 3, 6] * n,
'c': [1, 3, 3, 9] * n
}
df = pd.DataFrame(data)
# Solution 1.
%timeit df.assign(b_c=df['b'].div(df['c']), c_b=df['c'].div(df['b'])).groupby('a')[['b_c', 'c_b']].max()
# 3.96 ms ± 152 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
# Solution 2.
def func(x):
C= (x['b']/x['c']).max()
D= (x['c']/x['b']).max()
return pd.Series([C, D], index=['b_c','c_b'])
%timeit df.groupby('a').apply(func)
# 1.09 s ± 56.2 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Both solutions give the same result.
Post a Comment for "Use Agg In Python For Pd.dataframe Wiht Customized Function Whose Inputs Are Multiple Dataframe Columns"